Vol. 6 No. 2 (2021): March-April
Original Articles

MEGAFOSSIL TREES REVEAL PAST LANDSCAPES OF THE SWEDISH SCANDES

Maria Sofia Andersson
Department of Ecology and Environmental Science, Umeå University, SE 901 87 Umeå, Sweden
Olof Erik Johansson
Department of Ecology and Environmental Science, Umeå University, SE 901 87 Umeå, Sweden

Published 2023-09-19

Keywords

  • Megafossils,
  • Treelines,
  • Holocene,
  • Scandes,
  • Climate,
  • Plant species
  • ...More
    Less

How to Cite

Andersson, M. S., & Johansson, O. E. J. (2023). MEGAFOSSIL TREES REVEAL PAST LANDSCAPES OF THE SWEDISH SCANDES. Academic Journal of Science, Engineering and Technology, 6(2), 16–34. Retrieved from https://topjournals.org/index.php/AJSET/article/view/585

Abstract

The structure and plant species composition of Late-glacial and Early-Holocene landscapes in the
Swedish Scandes are poorly understood. Traditional pollen analytical inferences, glacier histories, and textbook
narratives are beset with inaccuracies and uncertainties, particularly in high-mountain regions. More direct,
robust, and reliable mega- and macrofossil records provide unambiguous evidence of the former early local
presence of tree species at specific sites and elevations, far beyond modern treelines.

References

  1. Aas, B. &Faarlund, T. 2000. Forest limits and the subalpine birch belt in North Europe with focus on Norway.
  2. AmS-Varia 37, 103-147.
  3. Bakke, J., Lie, Ø., Dahl, S.O., Nesje, A. &Bjune, A.E. 2008. Strengths and spatial pattern of the Holocene
  4. wintertime westerlies in the NE Atlantic region. Global and Planetary Change 60, 28-41.
  5. Barnekow, L. 1999. Holocene tree-line dynamics and inferred climatic changes in the Abisko area, northern
  6. Sweden, based on macrofossil and pollen records. The Holocene 9(3), 253-265.
  7. Benedicht, J.B., Benedicht, R.J., Lee, C.M. & Staley, D.M. 2008. Spruce trees from a melting ice patch: evidence
  8. for Holocene climatic change in the Colorado Rocky Mountains, USA. The Holocene 18, 1067-1076.
  9. Berger, A. &Loutre, M.F. 1991. Insolation values for the climate of the last 10 million years. Quaternary Science
  10. Reviews 10, 297-317.
  11. Berglund, B., Barnekow, L., Hammarlund, D., Sandgren, P. & Snowball, I.F. 1996. Holocene forest dynamics and
  12. climate changes in the Abisko area, northern Sweden – the Sonesson model of vegetation history
  13. reconstructed and confirmed. Ecological Bulletins 45, 15-30.
  14. Bergman, I., Olofsson, A., Hörnberg, G., Zackrisson, O. &Hellberg, E. 2004. Deglaciation and colonization;
  15. pioneer settlements in northern Fennoscandia. Journal of World Prehistory 18, 155-177.
  16. Birks, H.H., Larsen, E. & Birks, H.J.B. 2005. Did tree-Betula, Pinus and Picea survive the the last glaciation
  17. along the west coast of Norway? A review of the evidence in light of Kullman (2002). Journal of
  18. Biogeography 32, 1461-1471.
  19. Carcaillet, C., Hörnberg, G. &Zackrisson, O. 2012. Woody vegetation, fuel and fire track the melting of the
  20. Scandinavian ice-sheet before 9500 cal.yr BP. Quaternary Research 78(3), 540-548.
  21. Dahl, S.O., Nesje, A. &Øvstedal, J. 1997. Cirque glaciers as morphological evidence for a thin Younger Dryas
  22. ice sheet in east-central southern Norway. Boreas 26, 161-180.
  23. Fickert, T., Friend, D., Grüninger, F., Molina, B. & Richter, M. 2007. Did debris-covered glaciers serve as
  24. Pleistocene refugia for plants? A new hypothesis derives from observations of recent plant growth on
  25. glacier surfaces. Arctic, Antarctic, and Alpine Research 39, 245-257.
  26. Follestad, B. 2003. Development of minor late-glacial ice domes east of Opdal, Central Norway.
  27. NorgesGeologiskeUndersøkelseBulletin 441, 39-49.
  28. Goehringa, B.M., Brook, E.J., Linge, H., Raisbeck, G.M. &Yiou, F. 2008. Beryllium-10 exosure ages of erratic
  29. boulders in southern Norway and implications for the history of the Fennoscandian Ice Sheet. Quaternary
  30. Science Reviews 27, 320-336.
  31. Helama, S., Lindholm, M., Timonen, M. &Eronen, M. 2004. Dendrochronologically dated changes in the limit
  32. of pine, northwest Finland during the past 7.5 millennia. Boreas 33, 250-259.
  33. Holmlund, P., Karlén,W. &Grudd, H, 1996. Fifty years of mass balance and glacier front observations at the
  34. Tarfala Research Station, GeografiskaAnnaler 78A, 105-114.
  35. Hörnberg, G., Bohlin, E., Hellberg, E., Bergman, I., Zackrisson, O., Olofsson, A. &Wallin, J.-E. 2006. Effects of
  36. Mesolithic hunter-gatherers on local vegetation in a non-uniform glacio-isostatic land uplift area,
  37. northern Sweden. Vegetation History and Archaeobotany 15, 13-26.
  38. Huntley, B. & Birks, H.J.B. 1983. An atlas of past and present pollen maps for Europe: 0-13000 years ago.
  39. Cambridge University Press, Cambridge.
  40. Ivy-Ochs, S., Kerschner, H., Maisch, M. Cristl, M. Kuabik, P. W. &Schlűchter, C. 2009. Latest Pleistocene and
  41. Holocene glacier variations in the European Alps. Quaternary Science Reviews 28, 2137-2149.
  42. Johnsen, T.F. 2010. Late Quaternary ice sheet history and dynamics in central and southern Scandinavia.
  43. PhDthesis, Stockholm University, Sweden.
  44. Karlén, W. 1976. Lacustrine sediments and tree-limit variations as indicators of Holocene climatic fluctuations in
  45. Lappland, northern Sweden. GeografiskaAnnaler 55A, 29-63.
  46. Karlén, W. &Kuylenstirena, J. 1996. On solar forcing of Holocene climate: Evidence from Scandinavia. The
  47. Holocene 6(3), 359-365.
  48. Koch, J., Clague, J.J. & Osborn, G. 2014. Alpine glaciers and permanent ice and snow patches in western Canada
  49. approach their smallest sizes since the mid-Holocene consistent with global trends. The Holocene 24(2),
  50. -1648.
  51. Kullman, L. 1995. Holocene tree-limit and climate history from the Scandes Mountains, Sweden. Ecology 76,
  52. -2502.
  53. Kullman, L. 1998. Palaeoecological, biogeographical and palaeoclimatological implications of early Holocene
  54. immigration of LarixsibiricaLedeb. into the Scandes Mountains, Sweden. Global Ecology and
  55. Biogeography Letters 7, 181-188.
  56. Kullman, L. 2002. Boreal tree taxa in the central Scandes during the Late-Glacial: implications for LateQuaternary forest history. Journal of Biogeography 29, 1117-1124.
  57. Kullman, L. 2004. Early Holocene apperance of mountain birch (Betulapubescens ssp. tortuosa at high elevations
  58. in the Swedish Scandes: megafossil evidence exposed by recent snow and ice recession. Arctic, Antarctic,
  59. and Alpine Research 30, 172-180.
  60. Kullman, L. 2006. Late-glacial trees from arctic coast to alpine tundra. Journal of Biogeography 33, 376.
  61. Kullman, L. 2010. A richer, greener and smaller alpine world: review and projection of warming-induced plant
  62. cover change in the Swedish Scandes.Ambio 39, 159-169.
  63. Kullman, L. 2013. Ecological tree line historyand palaeoclimate – review of megafossil evidence from the
  64. Swedish Scandes. Boreas 42, 55-567.
  65. Kullman. 2017a. Melting glaciers in the Swedish Scandes provide new insights into palaeotreeline performance.
  66. International Journal of Current Multidisciplinary Performance 3(3), 607-618.
  67. Kullman, L. 2017b. Further details on Holocene treeline, glacier/ice patch and climate history in Swedish Lapland.
  68. International Journal of Research in Geography 3(4), 61-69.
  69. Kullman, L. 2018. Larix an overlooked taxon in boreal vegetation. A review with perspective on incongruencies
  70. between megafossil and pollen records. Geo-Öko 39, 90-110.
  71. Kullman, L. 2019. Early signs of a fundamental subalpine ecosystem shift in the Swedish Scandes – the case of
  72. the pine (Pinussylvestris L.)treeline ecotone. Geo-Öko 40, 122-175.
  73. Kullman, L. &Kjällgren L. 2000. A coherent postglacial tree-limit chronology (Pinussylvestris L.) for the Swedish
  74. Scandes: aspects of paleoclimate and ”recent warming”, based on megafossil evidence. Arctic, Antarctic
  75. and Alpine Research 32, 419-428.
  76. Kullman, L. &Kjällgren L. 2006. Holocene pine tree-line evolution in the Swedish Scandes: Recent tree-line rise
  77. and climate change in a long-term perspective. Boreas 35(1), 159-168.
  78. Kullman, L. & Öberg, L. 2009. Post- Little Ice Age tree line rise and climate warming in the Swedish Scandes: a
  79. landscape ecological perspective. Journal of Ecology 97, 415-429.
  80. Kullman, L. & Öberg, L. 2013. Melting glaciers and ice patches in Swedish Lapland provide new insights into
  81. the Holocene arboreal history. Geo-Öko 33, 121-146.
  82. Kullman, L. & Öberg, L. 2015. New aspects of high-mountainpalaeobiogeography: a synthesis of data from
  83. forefields of receding glaciers and ice patches in the Tärna and Kebnekaise Mountains, Swedish Lapland.
  84. Arctic 68(2), 141-152,
  85. Kullman, L. & Öberg, L. 2019. Smältandeglaciärer – fornatidersklimat, trädochskogar. FörlagBoD, Stockholm.
  86. Laaksonen, K. 1976. The dependence of mean air temperature upon latitude and altitude in Fennoscandia.
  87. AnnalesAcademiaeScientiarumFennicae A3 199, 1-19.
  88. Lundqvist, J. 1969. BeskrivningtilljordartskartaöverJämtlandslän. SverigesGeologiskaUndersökning Ser. Ca 4,
  89. ,
  90. Lundqvist, J. 1986. Late Weichselian glaciation and deglaciation in Scandinavia, Quaternary Science Reviews 5,
  91. -292.
  92. Lundqvist, J, 1994. Inlandsisensavsmältning. In: BergochJord. SverigesNationalatlas. BraBöcker, Höganäs, pp,
  93. -131.
  94. Luoto, T.P., Kaukolehto, M., Weckström, J., Korhola, A. &Väliranta, M. 2014. New evidence of warm
  95. earlyHolocene summers in subarctic Finland based on an enhanced regional chironomid-based
  96. temperature calibration model. Quaternary Research 81 (1), 50-62.
  97. Moe, D. 1970. The post-glacial immigration of Piceaabies into Fennoscandia. BotaniskaNotiser 123, 61-66.
  98. Mörner, N.A., Solheim, J.-E., Humlum, O. &Pedersen, S.I. 2020. Changes in Barents Sea ice edge positions in
  99. the last 440 years: A review of possible driving forces. International Journal of Astronomy and
  100. Astrophysics 10, 97-164.
  101. Nesje, A., Pilø, L.H., Finstad, E. and 7 others. 2011. The climatic significance of artefacts related to prehistoric
  102. reindeer hunting exposed by melting ice patches in southern Norway. The Holocene 22(4), 485-496.
  103. Nicolussi, K. &Patzelt, G. 2000. Discovery of early Holocene wood and peat on the forefield of the Pasterze
  104. Glacier, Eastern Alps, Austria. The Holocene 10, 191-199.
  105. Öberg, L. & Kullman, L 2011. Recent glacier recession-a new source of postglacial treeline and climate history
  106. in the Swedish Scandes. Landscape Online 26, 1-38.
  107. Parducci, L.,Jørgensen, T.,Tollefsrud, M.M and 22 others. Glacial survival of boreal trees in northern Scandinavia.
  108. Science 355, 1083-1086.
  109. Påsse, T. &Andersson, L. 2005. Shore-level displacement in Fennoscandia calculated from empirical data.
  110. GeologiskaFöreningen i StockholmsFörhandlingar 127, 253-268.
  111. Paus, A. 2010. Vegetation and environment of the Rødalen alpine area, Central Norway, with emphasis on the
  112. early Holocene. Vegetation History and Archaeobotany 19, 29-51
  113. Paus, A. 2013. Human impact, soil erosion, and vegetation response lags to climate changes: challenges for the
  114. mid-Scandinavian pollen-based transfer-function temperature reconstructions. Vegetation History and
  115. Archaeobotany 22, 269-284.
  116. Paus, A., Velle, G. & Berge, J. 2011. The Lateglacial and early Holocene vegetation and environment in the Dovre
  117. mountains, central Norway, as signalled in two Lateglacialnunatak lakes. Quaternary Science Reviews
  118. ,1780-1793.
  119. Paus, A. &Haugland, V. 2017. Early- to mid-Holocene forest-line and climate dynamics in southern Scandes
  120. Mountains inferred from contrasting megafossil and pollen data. TheHolocene 27, 361-383.
  121. Schenk, F., Väliranta, M. &Muschitiello, F. and 7 others2018. Warm summers during the Younger Dryas cold
  122. reversal. Nature Communications 9, 1634.
  123. Schlüchter, C. &Jörin, U. 2004. HolzundTorffundealsKlimaindikatoren. AlpenohneGletscher. Die Alpen 2004(6),
  124. -47.
  125. Segerström, U. & von Stedingk, H. 2003. Early-Holocene spruce, Piceaabies (L.) Karst., in West central Sweden
  126. as revealed by pollen analysis. The Holocene 13, 897-906.
  127. Seppä. H., Alenius, T., Bradshaw, R., Giesecke, T., Heikkilä M. &Muukkonen, P. 2009. Invasion of Norway
  128. spruce (Piceaabies) and the rise of the boreal ecosystem in Fennoscandia. Journal of Ecology 97, 629-
  129. Smith, H. 1920. Vegetationenochdessutvecklingshistoria i detcentralsvenskahögfjällområdet.
  130. Almqvist&Wiksells, Uppsala.
  131. Väliranta, M. Kaakinen, A., Kuhry, P., Kulti, S., Salonen, J.S &Seppä, H. 2011. Scattered late-glacial and early
  132. Holocene tree populations as dispersal nuclei for forest development in north-eastern European Russia.
  133. Journal of Biogeography 38, 922-932.
  134. Väliranta, M., Salonen, J.S., Heikkilä, and 10 others 2015. Plant macrofossil evidence for an early onset of the
  135. Holocene summer thermal maximum in northernmost Europe. Nature Communications 6. DOI:
  136. 1038/ncomms7809.
  137. Zahle, R., Huang, Y.-T., Bigler, C., Wood, J.R., Dalén, L., Wang, X.-R., Segerström, U. &Klaminder, J. 2018.
  138. Growth of plants on the Late Weichselian ice-sheet during Greenland interstadial-1? QuaternaryScienceReviews
  139. , 222-239