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Abstract: Stochastic production systems (SPS) play a pivotal role in industries such as fermentation,
pharmaceuticals, and composite material production, where stringent quality constraints are paramount. To
ensure product quality in such systems, effective process monitoring is imperative. However, SPS presents
significant challenges due to its inherent stochasticity and measurement uncertainties, stemming from sensitivity
to exogenous factors and the lack of accurate in-situ measurements. This paper explores the landscape of SPS
process monitoring methods, highlighting their limitations and proposing a novel approach leveraging recurrent
neural networks (RNNs), particularly Long Short-Term Memory (LSTM) networks.
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Introduction:

Stochastic production systems (SPS) have found applications in diverse fields, including fermentation,
pharmaceuticals, and composite material production [1]-[7]. These applications demand stringent quality control
measures to ensure the desired product quality. However, SPS presents unique challenges for process monitoring
due to its inherent stochastic nature and measurement uncertainties, making effective quality control a complex
endeavor. This introduction sets the stage for the exploration of process monitoring methods in SPS, emphasizing
the need for innovative approaches.

SPS exhibits significant intrinsic stochasticity, primarily attributed to its sensitivity to various exogenous factors
such as input variations, environmental conditions, and equipment status. These factors can introduce substantial
variability in the quality and performance of the final product. Moreover, the lack of accurate in-situ measurement
methods adds an extra layer of noise to the available data, making process monitoring in SPS indispensable yet
inherently challenging.

Over the past few decades, researchers have developed several methods for SPS process monitoring. One
prevalent approach is the application of multiway Principal Component Analysis (PCA) [8]. While this method
offers simplicity, low-dimensional computation, and fast processing of high-dimensional data, it is inherently
linear and struggles to capture nonlinear dynamics—a prevalent feature in SPS.

To address the limitations of linear methods, researchers have explored kernel methods, which map data into
high-dimensional feature spaces where linearity can be preserved [9]. Additionally, there have been efforts to
enhance Independent Component Analysis (ICA) methods [10], propose novel strategies like the kernel ICAPCA
method [11], and develop multiway kernel entropy ICA methods [12]. These approaches aim to capture the
nonlinear and non-Gaussian characteristics inherent in SPS data. Furthermore, Support Vector Machines (SVM)

Academic Journal of Science, Engineering and Technology

| https://topjournals.org/index.php/AJSET


mailto:topacademicjournals@gmail.com

Academic Journal of Science, Engineering and Technology
Vol.7, Issue 1; January - Febuary 2022;

1252 Columbia Rd NW, Washington DC, United States T
https://topjournals.org/index.php/AJSET/index; mail: topacademicjournals@gmail.com

Top Academic Journals

integrated with PCA or fuzzy reasoning have been employed for anomaly detection in SPS [13], [14]. However,
these methods have limited capacity to handle heavy-tailed and multimodal SPS data, and their hyperparameter
tuning can be cumbersome.

The universal approximation theorem underscores the potential of neural networks to represent any function
between inputs and outputs [15], making them an attractive option for SPS process monitoring. Auto-associative
neural networks [16], [17] and deep neural networks [18]-[22] have been extensively explored for this purpose.
However, these methods often assume sample independence and overlook dynamic correlations, limiting their
effectiveness in capturing the complexities of SPS data.

Recurrent neural networks (RNNs), particularly Long Short-Term Memory (LSTM) networks [23], offer a
promising alternative for SPS process monitoring. LSTMs excel at predicting future system evolutions based on
current and historical data, making them well-suited for anomaly detection [24], [25]. Nevertheless, their use is
sometimes criticized for their limited interpretability, as they provide few insights into the underlying physical
processes.

In this paper, we delve into the application of LSTM networks for SPS process monitoring, aiming to overcome
the limitations of existing methods and provide a deeper understanding of the monitored systems. Our proposed
approach leverages the predictive power of LSTMs while striving to enhance interpretability, ultimately
contributing to more effective and insightful SPS process monitoring.

2. Problem Statement

The most representative example of SPS is biochemical systems, and hence we will focus on it to showcase the
developed method in the rest of the paper. The essence of biochemical systems is to convert substrates into high-
value-added metabolites by living organisms (mostly cells). One of the major impediments for biochemical
system production in high quality and quantity stems from the existence of a subpopulation of cells showing
remarkably reduced production efficiency and capacity, which is termed as population heterogeneity in synthetic
biology . Such heterogeneity is an inevitable consequence of stochastic gene expression, which is solidly
supported by massive single-cell experiments % 491 In the context of biochemistry, gene expression indeed
consists of a set of biochemical reactions with the participation of various macromolecules harbored in
microscopic reactors (cells). The scarce of such macromolecules and the random molecular collision in the
crowding reaction compartment of limited volume collectively lead to the stochasticity of intracellular
biochemical reaction, particularly gene expression. As such, it is plausible to focus on gene expression process,
which is the most critical and representative part. Without any loss of generality, any intracellular biochemical
reaction can be described by

Zij\;l SiT‘Xi i"z;’ilpu‘X:' T:1.2,"' 1R! (1)
where Xi stands for species # 7 =1.2,--+ .V (), the stoichiometric coefficients Pand are nonnegative integers

specifying the molecule numbers of reactants and products involved in rgaction resprectively, and #- is the rate
constant of reaction ”. In the stochastic sense, is inversely proportional to the mean time of two successive
reactions. The propensity of reaction is

fe(n) = b QTIL, =t )
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with { being the compartment volume and 7 being the molecule number of reactant 7. Indeed, the propensity
can be loosely understood as the probability of reaction occurrence. For instance, the transcription can be
compactly described by

G5 G+ M, (3)

where &, M stand for gene and messenger RNA (mRNA) respectively, and # is the transcription rate constant.
Besides, there are various exogenous factors perturbing the normal operation of biochemical system, such as
temperature fluctuation and contamination. The temperature impacts the reaction through reaction constants
according to Arrhenius law. Arguably, so is the mechanism of contamination, as contamination may affect the
catalytic efficiency of some enzyme. Hence, within the framework ,%Ohen an anomaly takes place, it is reflected
through the change of one or a group of reaction rate constants . The goal of process monitoring then becomes
detecting anomaly from the data of reaction species if some reaction rate constant % changes.

3. Methods

3.1. Data Acquisition

The dynamics of system (1) can be simulated by the renowned Stochastic Simulation Algorithm (SSA), also
known as Gillespie algorithm in systems biology [*!l. The basic idea is to draw two random numbers, one for
calculating the next reaction time, and the other for determining next reaction type. The pseudocode for SSA is
presented as follows.

Algorithm 1 Stochastic Simulation Algorithm

1: Initialization: ¢ < 0.1 lmax
2: Repeat
3:  Calculate propensities according to (2)

. . . P — R
4:  Obtain the time step to the next reaction event 7 = —m(w1)/AA =32, fr(n)
5: Determine the next reaction event
r = smallest integer satisfying Y7, fi(n) > us)

6: Update time < t+7

7:  Update according to (1)
8: Until = fmax

Output:

Notably, there is a Julia implementation developed by our group and available on Github as DelaySSAToolkit.
The package is based on DiffEqJump, but more powerful as it is even able to simulate delayed reactions [,

3.2. Koopman Operator Theory

Here we present a brief summary of Koopman operator theory. For more details, readers are encouraged to refer
to [43]. Considering a discrete-time system, whose dynamics are governed by

X1 = F(xp). (4) The state *+ is only observable through some function ¥ such that

yi = o) = [pr(x), -, palx)]T. )
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As shown in Figure 1, the Koopman operator ¥ is an infinite-dimensional linear operator acting on observing
function ¥ such that

Ke=¢oF < Ky, = yit1s (6)

where © is the composition operator.

Suppose that in some Hilbert space spanned by a set of basis functions ¢/ termed Koopman eigenfunctions
satisfying that

0i(Xpt1) = Ko(xp) = Aid(xi)- (7) It follows that observing function can be compactly decomposed
into

p(x) = 2272, di(x)vi, (8)

with the Koopman mode being Vi = [{@ip1)see+ 5 (65 0n)] T, As per (7), the evolution of the measurement dynamics
can be presented as

O(Xpg1) = Kp(xr) = D070 Aidi(xk)vi, 9)

which is referred as Koopman mode decomposition and tightly
connected to DMD. ¥ DMD is indeed a finite truncation of Koopman
mode decomposition K for a linear system ( is a linear function) (28} [43],

Figure 1: Schematic of Koopman operator theory. An observing

- . WK""W---K X0 g -
th.I’lCthI’.l K, while the evhiytion bperatoh ' of thtes maps system Sstates X« into ahzgh
dimensional ' ' ' . space where measurements evolving
linearly governed by Koopman operator is
usually nonlinear!*/.

Figure 2: . Sche'mmics"flof deep Koopman neural
network.  (a) ® shows an autol_encoder and

establishing a > _(bijective static mapping between  the
original space xx and the high-dimensional linear space -+

. (b) shows how the DKNN performs one-step prediction. (c) interprets the loss function . The left panel
corresponds to X#(x&), while the right stands for
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Figure 3: DKNN based anomaly detection protocol. Left: SVDD calculates the radius associated with 90%
confidence interval based on the residues between predictions and measurements. Right: An anomaly is detected

Academic Journal of Science, Engineering and Technology

| https://topjournals.org/index.php/AJSET


mailto:topacademicjournals@gmail.com

Academic Journal of Science, Engineering and Technology
Vol.7, Issue 1; January - Febuary 2022;

1252 Columbia Rd NW, Washington DC, United States T
https://topjournals.org/index.php/AJSET/index; mail: topacademicjournals@gmail.com

Top Academic Journals

if the residue of a newly cast prediction is larger than an established radius. Otherwise, the system is still working
in normal.

3.3. Deep Koopman Neural Network

KOT is a seemingly elegant theory enabling global linearization but rather difficult to perform, as solving the
triplet of the eigenfunction ¢, the eigenvalue Ai and the mode Vi is a daunting task. The choice of eigenfunctions
is non-trivial and calls for intricate tricks. In stark contrast, deep neural network provides a convenient way to
seek the eigenfunctions. Reference [33] reported a neat approach based on a deep autoencoder which constitutes
a bijective mapping between the original space and the highdimensional linear space and approximates the set of
the valid eigenfunction bases (see Figure 2a). Note that [33] needs an auxiliary neural network to perform the
Koopman operator, and it substantially increases the complexity. As such, we revise the neural network presented
in [33] by removing the auxiliary neural network and identifying the linear operator K directly, which is modeled
by a linear network (see Figure 2b). Subsequently, we specify the loss function for the DKNN training. The loss
function is composed of five parts, the first three of which is specified as follows

Lo=|xx—9 " (¢ (Xk))”MSE

Ly = HX"“‘H — 7 (Kyp (X""'))”MSE‘.,

Le=l¢(xrt1) — Ko (xi) ysE. (10)

Here anfl repre%fent the reconstruction error and one-step prediction error in the original space respectively, and
is the one-step prediction error in the high-dimensional linear space (see Figure 2c). The subscript MSE stands
for mean squared error.

An £~ term is also used to penalize the data point with the largest loss

Loo =% — 97 (v (x0))|

[l = o7 (Koo () (11) Additionally, /2 regularization is imposed on the neural
network weights W to prevent overfitting
Lw = [|[W]3 (12) Hence, the total loss function is the weighted summation of all the five
parts
L=o1L,+ a2l +asl. + sl +aslw, (13)

where foftistands¥or the weight for each parts in the loss function. The DKNN is then determined by solving the
optimization problem . For SPS process morﬁli?oKfivﬁrg'Z %he input X« can be the moments (mean, variance, etc.) of
molecule counts of interest.

3.4. Anomaly Detection Protocol

With the DKNN model well trained, it is possible to calculate the residues between the model predictions and
measurements. Given the residues yielded, the SVDD is used to compute the 90% confidence threshold, which
is termed as radius thereafter (see Figure 3Left). In practice, given the historical data, DKNN casts one-step
predictions, which are used to compute the residues. The yielded residues are compared with the radius obtained
before. If a residue is larger than the radius, an anomaly is detected. Otherwise, the system is still running
normally (see Figure 3Right).
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Figure 4: Stochastic simulations for Example 1.
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Figure 5: DKNN process monitoring for Example 1 based on mean-value data. (a) shows the DKNN model based
on mean-value data cast precise one-step predictions, as predictions (green dots) are close to the line v =«
(purple). (b) SVDD calculates the radius (red) for anomaly detection and most samples (green dots) are contained
within the radius.
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Figure 6: Sensitivity of moments against anomaly. The anomaly occurs at time ' =4, All the moments are
normalized for visual convenience, and the normalization methods are stated in Appendix
6.2. Moments of order higher or equal to 2 are sensitive to anomaly, while the mean value is not.
Table 1: Anomaly detection F-scores test result for mean-valued data of example 1.

Confidence 90%
Time (min) 401 420 450 480
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Figure 7: Accuracy of DKNN models one-step prediction for different orders of moments. DKNN model trained
on a dataset containing (a) mean and variance; (b) mean, variance and third-order moment; (c) mean, variance,
third-order moment and fourth-order moment.
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Figure 8: F-score of temporal anomaly detection of three DKNN model trained on dataset containing moments
of order up to 2, 3 and 4.

4. Results

Next we unfold the process monitoring protocols on two canonical examples with both firmly rooted in SPS.
4.1. Example 1

The first canonical example considered comprises the following set of biochemical reactions:

o T

g ——iP, r @, (14)

where 7 stands for a protein of interest. The first reaction in (14) in fact represent a group of reactions, and means
that the protein is produced in bursts, whose size # conforms to a geometric distribution parametrized by 1/(1 + 3)
, while the second stands for the degradation of protein or its loss of functionality. The system (14) is known as
bursty system in literature, and was found to adequately characterize the stochastic dynamics of most genes in
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mammalian or human cells 1’1, The burst frequency * is selected as 0.0282 min™!, the mean burst size 7 is 3.46,
and the degradation rate constant ¢ is 0.01 min™!. These kinetic parameters correspond to those associated with
gene Nanog in mouse embryonic stem cells 401,

We first simulate the system (14) by means of SSA for 1, 10, 100 and 1000 realizations and each for two sets. In
either set, the protein numbers are averaged for all realizations at each time point. The results in Figure 4 show
that the single-realization data is remarkably noisy and thus poses challenges for establishing a robust process
monitoring model (see Figure 4a). The distribution of protein numbers at * = 400 min is shown in Figure 4e, and
is indeed a negative binomial distribution . The fluctuations are substantially attenuated as the number of
averaged realizations increase (see Figures. 4b, 4c, 4d). It suggests that ensemble method is a simple but effective
approach for data curation. However, precautions should be taken for large number of realizations for two
reasons: (i) the anomaly may be averaged out so that its detection becomes challenging; (ii) the large number of
realizations is tantamount to that of cells, whose sampling may be difficult in practice. Here we choose the number
to be 100.

Next we show that the mean is not adequate for process monitoring on SPS. To this end, we simulate a fault by
decreasing ©* to a third (@ = 0-0094 min') and increasing 3 by three times (7 = 10-38) at time ! = 401, First, we
trained a DKNN model with mean values at two successive time points as input and output. The training dataset
comprises 2000 data points collected at time # = 400 and ¢ = 401 corresponding to the steady state (see Figure 4e),
while a test set is of size 100, on which an accuracy test is performed. The accuracy of the trained DKNN model
is shown in Figure 5a. The predictions are distributed close to the line ¥ = ¥, indicating that these predictions are
accurate. By means of SVDD, a radius for anomaly detection is computed and shown as red line in Figure 5b.
Most of the residues (~ 90%) are contained within this radius. Within the help of the DKNN model and the radius,
we perform the test to detect the aforementioned anomaly occurring at time / = 401, The F-scores averaged over
20 independent ensemble samples at 4 different time points are presented in Table 1. It clearly shows that the
detection accuracy is low and cannot be improved over time, thereby solidly advocating our statement that mean
value is not sufficient for SPS process monitoring. The unsatisfactory result is attributed to the anomaly we
specially chose. As stated previously, the steady state distribution of the system (14) is negative binomial
NB(3: 1) with the mean being ©3/d. The mean is not altered for the specially selected anomaly.
Hence, it is a vivid example showing that the mean value is not adequate to characterize the SPS dynamics and
calls for high-order moments. It is also evidenced by Figure 6a that the difference between the faulted and normal
trajectories can hardly be discerned, whereas Figures. 6b, 6¢, 6d show that high-order moments are much more
sensitive to the anomalies.

parametrized as

Given the observation, it is necessary to incorporate high-order moments in datasets for SPS anomaly detection.
As such, we create another three pairs of training and test datasets, and each has the moments up to order 2, 3
and 4 respectively. The methods of moments calculation are stated in Appendix 6.1. After training DKNN models
on the three training datasets, three independent accuracy tests on the corresponding test dataset are carried out,
and the results are shown in Figure 7. It shows that the accuracy # degrades as the order of moment of prediction
interest increases as expected. Generally, the
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fluctuations in higher-order moments are more intense than that in lower-order moments.

Subsequently, we use the three well-trained DKNN models to detect the aforementioned anomaly. It shows in
Figure 8 that the detection becomes more accurate as the anomaly effects accumulate in time. Besides, the models
based on moments of order 3 and order 4 outperform that of order 2, while the performance of the former two
are comparable. Hence, it is concluded that the combination of moments of order up to 3 probably suits best for
DKNN model performing anomaly detection in SPS.

Furthermore, we compare the DKNN model and DMD model both trained on the dataset containing moments of
order up to 3. The accuracy comparison is summarized in Figure 9a. It shows that DKNN outperforms DMD on
the predictions of all the moments. However, the DKNN's advantage is mitigating as the stochasticity gets
stronger in higher-order moment data. As for anomaly detection, the F-scores of DKNN are higher than that of
DMD by 15% ~ 50% (see Figure 9b).
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Figure 9: Comparison of DKNN and DMD on (a) prediction accuracy and (b) anomaly detection of Example 1.
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Figure 10: Comparison of DKNN and DMD on prediction accuracy of Example 2.
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Figure 11: Stochastic simulations for Example 2.

Table 2: Comparision of DKNN and DMD on detection of anomalies case 1 & case 2 in example 2
Case Case 1 Case 2
Method DKNN | DMD | DKNN | DMD

n
=

001
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Time (min) | 21 21 21 21
F-score 9244 | 66.67 | 2391 | 16.39
(%0)

Table 3: DKNN technical details
Case Case 1 Case 2
Method DKNN | DMD | DKNN | DMD
Time (min) | 21 21 21 21
F-score 92.44 | 66.67 | 2391 | 16.39
(Y0)

4.2. Example 2

Next we consider a more complicated example, which is of great biological interest as well. The SPS consists of
five biochemical reactions:

¢ Grpr, G e+ pr PY oo,

au

GG, G I5G. (15)

The system as a whole is named felegraph model, which is a renowned model for gene expression in [44]. The
symbols and stand for two gene states that are actively expressing proteins (usually referred as ON state) and
less active (referred as OFF state with leakage). The first two reactions in (15) mean protein © being expressed,
the third stands for protein degradation, the fourth and fifth mean that the gene is hopping between ON and OFF

. . - s —1
states. The kinetic parameters we use here are:1 = 60 min™—"

', o, = 0.1 min~', &, = 0.25 miBy using SSA, we collect data at
time ‘ritin‘to theate a training dataset of size 2000 and a test dataset of size 100. Both datasets contain the moments
of order up to 3. By training DKNN and DMD model on the training dataset and comparing both on the test

dataset, it is found in Figure 10 that DKNN is remarkably better than DMD for predicting all the moments, despite

pz =25 min~", d =1 min~

a loss in accuracy compared to the result of Example 1. However, it is with expectation, since the distribution for
the kinetic parameters selected is bimodal suggesting the protein number is fluctuating between two disparate
levels (see Figure 11). In the following, we further compare both models on detecting two different types of
anomalies.

4.2.1. Case 1

The rate 71 is changed to 40 at time * = 21 min, which corresponds to gene expression process of state ON
changed. Based on the yielded models and the associated residues, SVDD computes the radii of 90% confidence
interval for anomaly detection. The detection result is reported in Table 2, where the Fscores strongly support the
superiority of DKNN.

4.2.2. Case 2

The rate @« is changed to 0-1 at time ! = 21 min, which corresponds the gene is more often switching to OFF state.
By applying the same process monitoring protocol again, the results in Table 2 again confirms DKNN's
supremacy against DMD. However, the F-scores are lower than that of Case 1. It may be related to that Case 2
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corresponds to a perturbation on the upstream of gene expression, while Case 1 corresponds to the downstream.
The upstream perturbation may be buffered by a multitude of downstream processes, and thus becomes more
challenging to detect. Nevertheless, Case 2 provides an excellent arena for benchmarking various process
monitoring methods.

5. Conclusions

In this paper, we discuss the process monitoring for SPS and develop an integrated method of Koopman operator
theory and deep neural network to solve it. The method uses a deep autoencoder structure to establish a bijective
mapping between original space and a high-dimensional linear space, where the Koopman operator operates. An
anomaly detection threshold is computed by SVDD on the basis of unmodeled residues. It is also argued that
given the novel type of stochasticity—intrinsic noise, the SPS in the form of biochemical systems simulated by
SSA can serve as an excellent arena for benchmarking various process monitoring methods. As SPS data is
remarkably noisy, we propose to use ensemble method to tackle it and conclude that high-order moments have to
be incorporated for robustness.

6. Appendix

6.1. Moment calculation

The moments in data are calculated as central moments

St =L YL (X - X, (16)

where " is the number of samples, -Y: stands for the value of sample at a certain time, and ¥ is

the mean of sample.

6.2. Moment normalization

The moments in the normal case is normalized by the min-max method as follows

R a7

where X is the raw moment data, X»o stands for the normalized moment, and Xwin, Xwas stand for the
minimum and maximum of the raw data. The moments in the faulted case are normalized as per the minimum
Xonin and maximum Yewex of the normal case.

6.3. Neural network details

The Koopman operator is implemented as a linear network. All the technical details of DKNN including network
structure and hyperparameters are summarized in Table 3. All the weights of neural network are initialized as per
a truncated normal distribution V'(0.0.1), while the biases are set to 0. The training optimizer is Adam with a
learning rate equal to 0.001.
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