Vol. 9 No. 1 (2024): January-Febuary
Original Articles

AQUACULTURE'S INNOVATION QUANDARY: ADDRESSING TECHNOLOGY DEFICITS AND EMPHASIZING FISH INTESTINAL MICROBIOTA RESEARCH IN AFRICA

Prof. Kwabena Osei Mensah
Department of Water Resources and Aquaculture Management School of Sustainable Development
Dr. Abena Yaa Owusu
Department of Biological Sciences School of Natural and Environmental Sciences2, University of Environment and Sustainable Development, Somanya, Eastern Region, Ghana.

Published 2024-02-01

Keywords

  • Aquaculture Technology, Rural Innovation, Sustainable Development, Technology Adoption, Rural Empowerment

How to Cite

Mensah, P. K. O., & Owusu, D. A. Y. (2024). AQUACULTURE’S INNOVATION QUANDARY: ADDRESSING TECHNOLOGY DEFICITS AND EMPHASIZING FISH INTESTINAL MICROBIOTA RESEARCH IN AFRICA. Top Academic Journal of Environmental and Agricultural Sciences , 9(1), 1–19. https://doi.org/10.5281/zenodo.10600516

Abstract

Technology, characterized as a strategic design to mitigate uncertainty in the causal relationship between action and outcome, comprises both hardware and software components (Rogers and Shoemaker, 1992). This definition encapsulates the essence of technological advancements, particularly within the aquaculture sector, where these innovations hold the promise of transformative opportunities for rural communities (Chattopadhyay, 2017). Despite the prevalence of low-tech farming practices in developing nations, the adoption of advanced technologies in aquaculture remains a formidable challenge. The effective assimilation of modern technologies into aquaculture operations not only addresses this challenge but also serves as a catalyst for industry-wide innovation (Chattopadhyay, 2017).

This study delves into the intricate dynamics of technology integration in aquaculture, focusing on its potential to revolutionize rural economies and foster sustainable development. The juxtaposition of traditional farming practices and cutting-edge technologies presents a unique opportunity to bridge existing gaps and enhance the overall efficiency and productivity of aquaculture operations. The inherent challenges associated with embracing new technologies in resource-constrained environments require a nuanced understanding of the socio-economic factors influencing adoption patterns.

By examining the evolving landscape of technology adoption in aquaculture, this research aims to shed light on the transformative potential of modern technologies in rural communities. The study considers the implications of technological integration for industry innovation, economic growth, and the empowerment of rural populations engaged in aquaculture activities. The findings are expected to inform policies and strategies that foster sustainable technology adoption, ultimately contributing to the advancement of aquaculture practices and the well-being of communities dependent on this vital sector.

References

  1. Ab Rahman A, Hamid UZA, Chin TA (2017). Emerging technologies with disruptive effects: A review. Perintis eJournal 7:111-128.
  2. Abdelrahman H, ElHady M, Alcivar-Warren A, Allen S, Al-Tobasei R, Bao L, Beck B, Blackburn H, Bosworth B, Buchanan J (2017). Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research. BMC Genomics 18:191. https://doi.org/10.1186/s12864-017-3557-1.
  3. Acar Ü, Kesbiç OS, Yılmaz S, Karabayır A (2018). Growth performance, haematological and serum biochemical profiles in rainbow trout (Oncorhynchus mykiss) fed diets with varying levels of lupin (Lupinus albus) meal. Aquaculture Research 49(7):2579-2586. doi:10.1111/are.13724
  4. Acar U, Kesbic OS, Yilmaz S, Kesbic FI, Gultepe N (2019). Gibel carp (Carassius auratus gibelio) meal as an alternative major protein in feeds for rainbow trout juveniles (Oncorhynchus mykiss). Turkish Journal of Fisheries and Aquatic Sciences 19(5):383-390. doi:10.4194/1303-2712-v19_5_03
  5. Ahire JJ, Mokashe NU, Chaudhari BL (2019). Effect of dietary probiotic Lactobacillus helveticus on growth performance, antioxidant levels, and absorption of essential trace elements in goldfish (Carassius auratus). Probiotics Antimicrobial Proteins 11(2):559-568. doi: 10.1007/s12602-018-9428-5.
  6. Aich N, Nama S, Biswal A, Paul T (2020). A review on recirculating aquaculture systems: Challenges and opportunities for sustainable aquaculture. Innovative Farming 5(2020):17-24. Retrieved from http://www.innovativefarming.in/index.php/IF/article/view/109.
  7. Amenyogbe E, Huang JS, Chen G, Wang WZ (2021). Probiotic Potential of Indigenous (Bacillus sp. RCS1, Pantoea agglomerans RCS2, and Bacillus cereus strain RCS3) Isolated from Cobia Fish (Rachycentron canadum) and Their Antagonistic Effects on the Growth of Pathogenic Vibrio alginolyticus, Vibrio harveyi, Streptococcus iniae, and Streptococcus agalactiae. Frontiers in Marine Science 8:672213. doi: 10.3389/fmars.2021.672213.
  8. Badiola M, Basurko OC, Piedrahita R, Hundley P, Mendiola D (2018). Energy use in Recirculating Aquaculture Systems (RAS): A review.
  9. Aquacultural Engineering 81:57-70. doi:10.1016/j.aquaeng.2018.03.003
  10. Bagi A, Riiser ES, Molland HS, Star B, Haverkamp THA, Sydnes MO, Pampanin DM (2018). Gastrointestinal microbial community changes in Atlantic cod (Gadus morhua) exposed to crude oil. BMC Microbiology 18:1-14. doi:10.1186/s12866-018-1171-2
  11. Bairagi A, Ghosh KS, Sen SK, Ray AK (2002). Enzyme producing bacterial flora isolated from fish digestive tracts. Aquaculture International 1(2):109-121. doi:10.1023/a:1021355406412.
  12. Bereded NK, Curto M, Domig KJ, Abebe GB, Fanta SW, Waidbacher H, Meimberg H (2020). Metabarcoding Analyses of Gut Microbiota of Nile Tilapia (Oreochromis niloticus) from Lake Awassa and Lake
  13. Chamo, Ethiopia. Microorganisms 8(7):1040. doi:10.3390/microorganisms8071040
  14. Bisi-Johnson MA, Obi CL, Ekpo MH, Umeobika UC (2017).
  15. Metagenomics and metabolomics analyses of African catfish (Clarias gariepinus) guts reveal the presence of microorganisms and their metabolic potentials. PLoS One 12(11):e0187667.
  16. Chattopadhyay NRV (2017). Induced fish breeding: a practical guide for hatcheries. Academic Press.
  17. Chen H, Li C, Liu T, Chen S, Xiao H (2019). A Metagenomic Study of Intestinal Microbial Diversity in Relation to Feeding Habits of Surface and Cave-Dwelling Sinocyclocheilus Species. Microbial Ecology 79(2):299-311. doi:10.1007/s00248-019-01409-4.
  18. Chen HY, Cheng SC, Chang CC (2020). Semantic scene modeling for aquaculture management using an autonomous drone. In International workshop on advanced imaging technology (IWAIT) 2020. International Society for Optics and Photonics 1151521.
  19. Clements KD, Angert ER, Montgomery WL, Choat JH (2014). Intestinal microbiota in fishes: what’s known and what’s not. Molecular Ecology 23(8):1891-1898. doi:10.1111/mec.12699.
  20. Dawood MAO, Koshio S, Ishikawa M, Yokoyama S, El Basuini MF, Hossain MS, Nhu TH, Dossou S, Moss SA (2016). Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish and Shellfish Immunology 49:275285. doi:10.1016/j.fsi.2015.12.047.
  21. Dupont C, Cousin P, Dupont S (2018). IoT for aquaculture 4.0 smart and easy-to-deploy real-time water monitoring with IoT, In 2018 global internet of things summit (GIoTS) (pp. 1–5). IEEE.
  22. Egerton S, Culloty S, Whooley J, Stanton C, Ross RP (2018). The Gut Microbiota of Marine Fish. Frontiers in Microbiology 9:873.doi: 10.3389/fmicb.2018.00873
  23. Eichmiller JJ, Hamilton MJ, Staley C, Sadowsky MJ, Sorensen PW (2016). Environment shapes the fecal microbiome of invasive carp species. Microbiome 4:44.
  24. Evensen T (2020). Fishy business: Closing the gap between data-driven decision-making (DDM) and aquaculture: An analysis of incumbents in the Norwegian aquaculture industry (NAI) and the use of big data for competitive advantage. http://hdl.handle.net/10400.14/29687
  25. Falcinelli S, Rodiles A, Hatef A, Picchietti S, Cossignani L, Merrifield DL, Unniappam S, Carnevali O (2017). Dietary lipid content reorganizes gut microbiota and probiotic L. rhamnosus attenuates obesity and enhances catabolic hormonal milieu in zebrafish. Scientific Reports 7(1):5512. doi:10.1038/s41598-017-05147-w.
  26. FAO (2020). The state of world fisheries and aquaculture 2020. Rome, Italy: Sustainability in action. Ferreira JG, Aguilar-Manjarrez J, Bacher C, Black K, Dong S, Grant J (2012). Progressing aquaculture through virtual technology and decision-support tools for novel management. In Global conference on aquaculture.
  27. Fetissov SO (2017). Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nature Reviews Endocrinology 13(1):11-25. doi: 10.1038/nrendo.2016.150.
  28. Gangadhara B, Keshavanath P, Ramesha TJ, Priyadarshini M (2004). Digestibility of bamboo-grown periphyton by carps (Catla catla, Labeo rohita, Cirrhinus mrigala, Cyprinus carpio, Ctenopharyngodon idella, and Tor khudree) and hybrid red tilapia (Oreochromis mossambicus X O. niloticus). Journal of Applied Aquaculture 15(3-4):151-162.
  29. German DP, Nagle BC, Villeda JM, Ruiz AM, Thomson AW, Balderas S C, Evans DH (2010). Evolution of herbivory in a carnivorous clade of minnows (Teleostei: Cyprinidae): Effects on gut size and digestive ph ysiology. Physiological and Biochemical Zoology 83(1):1-18. doi:
  30. 1086/648510.
  31. Giorgia G, Elia C, Andrea P, Cinzia C, Stefania S, Ana R, Daniel ML, Ike O, Oliana C (2018). Effects of Lactogen 13, a New Probiotic Preparation, on Gut Microbiota and Endocrine Signals Controlling Growth and Appetite of Oreochromis niloticus Juveniles. Microbial Ecology 76(4):1063-1074. doi:10.1007/s00248-018-1177-1.
  32. Gjedrem T, Robinson N (2014). Advances by selective breeding for aquatic species: A review. Agricultural Sciences 5:1152. DOI: 10.4236/as.2014.512125
  33. Guerreiro I, Serra CR, Oliva-Teles A, Enes P (2018). Short communication: gut microbiota of European sea bass (Dicentrarchus labrax) is modulated by short-chain fructooligosaccharides and xylooligosaccharides. Aquaculture International 26(1):279288. doi:10.1007/s10499-017-0220-4.
  34. Houston RD, Bean TP, Macqueen DJ, Gundappa MK, Jin YH, Jenkins TL, Selly SL, Martin SA, Stevens JR, Santos EM, Davie A (2020). Harnessing genomics to fast-track genetic improvement in aquaculture. Nature Reviews Genetics (7):389-409. doi: 10.1038/s41576-020-0227-y.
  35. Jiang M, Xu M, Ying C, Yin D, Dai P, Yang Y, Ye K, Liu K (2019). The intestinal microbiota of lake anchovy varies according to sex, body size, and local habitat in Taihu Lake, China. MicrobiologyOpen 9(1):e00955. doi:10.1002/mbo3.955.
  36. Jiang Y, Xie C, Yang G, Gong X, Chen X, Xu L, Bao B (2011). Cellulaseproducing bacteria of Aeromonas are dominant and indigenous in the gut of Ctenopharyngodon idellus (Valenciennes). Aquaculture Research 42(4):499-505. doi:10.1111/j.1365-2109.2010.02645.x.
  37. Jin YX, Wu SS, Zeng ZY, Fu ZW (2017). Effects of environmental pollutants on gut microbiota. Environmental Pollution 222:1-9.
  38. Johnston I (2018). Biosensors for real-time monitoring of biohazards and disease in aquaculture, sensors in food and agriculture in Food and Agriculture 2018. Norwich, UK. 9.07.
  39. Jothiswaran V, Velumani T, Jayaraman R (2020). Application of artificial intelligence in fisheries and aquaculture. Biotica Research Today 2(6):499-502.
  40. Kelly AM, Renukdas NN (2020). Disease management of aquatic animals, aquaculture health management. Elsevier. eBook ISBN: 9780128133606
  41. Li D, Wang Z, Wu S, Miao Z., Du L, Duan Y (2020). Automatic recognition methods of fish feeding behavior in aquaculture: A review. Aquaculture 528:735508. doi:10.1016/j.aquaculture.2020.735508
  42. Liu X, Shi H, He Q, Lin F, Wang Q, Xiao S, Dai R, Zhang Y, Yang H, Zhao H (2019). Effect of starvation and refeeding on growth, gut microbiota and non-specific immunity in hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂). Fish and Shellfish Immunology 97:182-193. doi:10.1016/j.fsi.2019.11.055
  43. Liu Y, Zhang Y, Wang Y, Chen Y (2021). Probiotics in Aquaculture: A Comprehensive Review. Aquaculture 531:735948.
  44. Liu Z, Liu W, Ran C, Hu J, Zhou Z (2016). Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis. Scientific Report
  45. (1):23214. doi:10.1038/srep23214.
  46. Llewellyn MS, Boutin S, Hoseinifar SH, Derome N (2014). Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology 22(5):207.
  47. Ma C, Chen C, Jia L, He X, Zhang B (2019a). Comparison of the intestinal microbiota composition and function in healthy and diseased Yunlong Grouper. AMB Express 9(1):1-11. doi:10.1186/s13568-019-0913-3.
  48. Ma J, Bruce TJ, Jones EM, Cain KD (2019b). A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 7(11):569. doi:10.3390/microorganisms7110569.
  49. Merrifield DL, Shaw BJ, Harper GM, Saoud IP, Davies SJ, Handy RD, Henry TB (2013). Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio). Environmental Pollution 174:157-163. https://doi.org/10.1016/j.envpol.2012.11.017.
  50. Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A (2015). Diet is the primary determinant of bacterial community structure in the guts of higher termites. Molecular Ecology 24(20):5284-5295. doi:10.1111/mec.13376.
  51. Navarrete P, Mardones P, Opazo R, Espejo R, Romero J (2008). Oxytetracycline Treatment Reduces Bacterial Diversity of Intestinal Microbiota of Atlantic Salmon. Journal of Aquatic Animal Health 20(3):177-183. doi:10.1577/h07-043.1.
  52. Nyman A, Huyben D, Lundh T, Dicksved J (2017). Effects of microbe- and mussel-based diets on the gut microbiota in Arctic charr (Salvelinus alpinus). Aquaculture Reports 5:34-40. doi:10.1016/j.aqrep.2016.12.003.
  53. Parlak O, Keene ST, Marais A, Curto VF, Salleo A (2018). Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Science Advances 4(7):eaar2904. doi: 10.1126/sciadv.aar2904.
  54. Parshukov AN, Kashinskaya EN, Simonov EP, Hlunov OV, Izvekova GI, Andree KB, Solovyev MM (2019). Variations of the intestinal gut microbiota of farmed rainbow trout, (Oncorhynchus mykiss Walbaum), depending on the infection status of the fish. Journal of Applied Microbiology 127(2):379-395. doi:10.1111/jam.14302.
  55. Prasolova-Førland E, Forninykh M, Ekelund OI (2019). Empowering young job seekers with virtual reality. In 2019 IEEE conference on virtual reality and 3D user interfaces (VR) pp. 295-302.
  56. Razman MAM, Majeed APA, Musa RM, Taha Z, Susto GA, Mukai Y (2020). Machine learning in aquaculture hunger classification. Singapore: Springer.
  57. Read MN, Holmes AJ (2017). Towards an integrative understanding of diet– host–gut microbiome interactions. Frontiers in Immunology 8:538. doi: 10.3389/fimmu.2017.00538.
  58. Rimoldi S, Terova G, Ascione C, Giannico R, Brambilla F (2018). Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources. PLoS ONE
  59. (3):e0193652. https://doi.org/10.1371/journal.pone.0193652.
  60. Ringø EZ, Zhou Z, Vecino JG, Wadsworth S, Romero J, Krogdahl Å, Olsen RE, Dimitroglou A, Foey A, Davies S, Owen M (2016). Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquaculture Nutrition 22(2):219-282. doi:10.1111/anu.12346.
  61. Rogers EM, Shoemaker FF (1992). Communication of innovation: A cross-culture approach. Fourth Edition, Collier Macmillan Publishers, London.
  62. Sánchez-Alonso I, Marín A, Delgado-Pertíñez M, Fernández-Palacios H (2020). Nutritional and Functional Improvement of Aquaculture Products through the Use of Additives. Marine Drugs 18(3):170.
  63. Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF (2012). Microbiota Regulate Intestinal Absorption and Metabolism of Fatty Acids in the Zebrafish. Cell Host and Microbe 12(3):277-288. doi:10.1016/j.chom.2012.08.003.
  64. Sheng Y, Ren H, Limbu SM, Sun Y, Qiao F, Zhai W, Du ZY, Zhang M (2018). The Presence or Absence of Intestinal Microbiota Affects Lipid Deposition and Related Genes Expression in Zebrafish (Danio rerio). Frontiers in Microbiology 9:1124. doi:10.3389/fmicb.2018.01124.
  65. Skrodenytė-Arbačiauskienė V, Sruoga A, Butkauskas D, Skrupskelis K (2008). Phylogenetic analysis of intestinal bacteria of freshwater salmon Salmo salar and sea trout Salmo trutta trutta and diet. Fisheries Science 74(6):1307-1314. doi:10.1111/j.14442906.2008.01656.x .
  66. Smorodinskaya S, Kochetkov N, Danilenko V, Bugaev O, Vatlin A, Abrosimova N, Antipov S, Kudryavtsev A,Klimov V (2022). Effects of Three Feed Additives on the Culturable Microbiota Composition and Histology of the Anterior and Posterior Intestines of Zebrafish (Danio rerio). Animals 12(18):2424. https://doi.org/10.3390/ani12182424
  67. Stagaman K, Burns AR, Guillemin K, Bohannan BJ (2017). The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish. Isme Journal 11(7):1630-1639. doi:10.1038/ismej.2017.28.
  68. Strandwitz P (2018). Neurotransmitter modulation by the gut microbiota. Brain Research 1693:128-133. doi: 10.1016/j.brainres.2018.03.015.
  69. Su X, Sutarlie L, Loh XJ (2020). Sensors, biosensors, and analytical technologies for aquaculture water quality. Research P. 8272705.
  70. Sulaiman MA, Kamarudin MS, Romano N, Syukri F (2020). Effects of increasing dietary carbohydrate level on feed utilisation, body composition, liver glycogen, and intestinal short chain fatty acids of hybrid lemon fin barb (Barbonymus gonionotus onioHypsibarbus wetmorei male eiius wetmoreiliver glycog: 100250. doi:10.1016/j.aqrep.2019.100250.
  71. Sullam KE, Essinger SD, Lozupone CA, O’CONNOR MP, Rosen GL, Knight RO, Kilham SS, Russell JA (2012). Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Molecular Ecology 21(13):3363-3378. doi:10.1111/j.1365-294x.2012.05552.x.
  72. Tarnecki AM, Burgos FA, Ray CL, Arias CR (2017). Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. Journal of Applied Microbiology 123(1):2-17. doi:10.1111/jam.13415.
  73. Weber GM, Lee CS (2014). Current and future assisted reproductive technologies for fish species. Current and Future Reproductive Technologies and World Food Productio. Springer. Advances in Experimental Medicine and Biology 752:33-76. doi: 10.1007/978-14614-8887-3_3.
  74. White WL, Coveny A, Robertson J, Clements KD (2010). Utilization of mannitol by temperate marine herbivorous fishes. Journal of Experimental Marine Biology and Ecology 391:50-56.
  75. Wu S, Wang G, Angert ER, Wang W, Li W (2020). Changes in gut bacterial community and morphology of grass carp in response to different diets. Aquaculture 528:735567.
  76. Wu Z, Zhang Q, Lin Y, Hao J, Wang S, Zhang J, Li A (2021). Taxonomic and Functional Characteristics of the Gill and Gastrointestinal Microbiota and Its Correlation with Intestinal Metabolites in NEW
  77. GIFT Strain of Farmed Adult Nile Tilapia (Oreochromis niloticus). Microorganisms 9(3):617. doi:10.3390/microorganisms9030617
  78. Xiao R, Wei Y, An D, Li D, Ta X, Wu Y, Ren Q (2019). A review on the research status and development trend of equipment in water
  79. treatment processes of recirculating aquaculture systems. Reviews in Aquaculture 11(3):863-895. https://doi.org/10.1111/raq.12270.
  80. Xing M, Hou Z, Yuan J, Liu Y, Qu Y, Liu B (2013). Taxonomic and functional metagenomic profiling of gastrointestinal tract microbiome of the farmede adult turbot (Scophthalmus maximus). FEMS Microbiology Ecology 86(3):432-443.
  81. Yang TT, Liu Y, Tan S, Wang WX, Wang X (2021). The role of intestinal microbiota of the marine fish (Acanthopagrus latus) in mercury biotransformation. Environmental Pollution 277:116768. https://doi.org/10.1016/j.envpol.2021.116768.
  82. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015). Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell 161(2):264-276. doi:10.1016/j.cell.2015.02.047.
  83. Yue K, Shen Y (2021). An overview of disruptive technologies for aquaculture. Aquaculture and Fisheries 7(2):111-120. doi:10.1016/j.aaf.2021.04.009