Vol. 7 No. 2 (2022): March-April
Original Articles

ENTERIC METHANE EMISSIONS FROM SMALL RUMINANTS IN A MEDITERRANEAN ECOSYSTEM

Elizabeth Anne Thompson
Department of Building Faculty of Environmental Science Baze University Abuja
José Luis Tellez-Plaza
Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín (Consejo Superior de Investigaciones Científicas, CSIC

Published 2023-09-14

Keywords

  • greenhouse gas emissions,
  • enteric methane,
  • methane conversion rate,
  • small ruminants,
  • climate change

How to Cite

admin, admin, & Tellez-Plaza, J. L. (2023). ENTERIC METHANE EMISSIONS FROM SMALL RUMINANTS IN A MEDITERRANEAN ECOSYSTEM . Top Academic Journal of Environmental and Agricultural Sciences , 7(2), 1–20. Retrieved from http://topjournals.org/index.php/TAJEAS/article/view/383

Abstract

Greenhouse gas (GHG) emissions from livestock have a significant impact on climate change. Enteric methane (CH4) is a major component of these emissions, and the methane conversion rate (Ym) is a critical variable in estimating CH4 emissions. The Ym is a measure of the proportion of the animal's gross energy intake (GEI) that is converted to CH4 energy. It is widely used for estimating regional and national GHG emission inventories and for setting targets for reducing enteric methane emissions.

This study reviews the current knowledge on the Ym in small ruminants. The review found that the Ym is variable and can be affected by a number of factors, including animal breed, feeding regime, and management practices. The review also found that there is a need for more research on the Ym in small ruminants, particularly in developing countries.

References

  1. Abecia, L., Toral, P.G., Martín-García, A.I., Martínez, G., Tomkins, N.W., Molina-Alcaide, E., & Newbold, C.J., (2012). Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats. J. Dairy Sci. 95:2027-2036.
  2. Aguilera, J.F. (2001). Aportaciones al conocimiento de la nutrición energética de pequeños rumiantes, con particular referencia al ganado caprino. Arch. Zootec. 50:565-596.
  3. Aguilera, J.F., & Prieto, C. (1991). Methane production in goats given diets based on lucerne hay and barley. Arch. Anim. Nutr. 41:77-84.
  4. Aguilera, J.F., Prieto, C., & Fonollá, J. (1990). Protein and energy metabolism of lactating Granadina goats. Br. J. Nutr. 63:165-175.
  5. Aguilera, J.F., Molina, E., Prieto, C., & Boza, J. (1986). Estimación de las necesidades energéticas de mantenimiento en ganado ovino de raza Segureña. Arch. Zootec. 35:89-96.
  6. Aguilera, J.F., Lara, L., Molina, E., & Prieto, C. (1991). Energy balance studies with growing Granadina goats during fasting and maintenance. Small Rumin. Res. 5:109-115.
  7. Aguilera, J.F., & Molina-Alcaide, E. (2021). Enteric methane production in adult sheep of the Segureña breed fed diets containing alkali-treated olive cake. Small Rumin. Res. 194:106295.
  8. Agricultural Research Council-ARC (1980). The nutrient requirements of ruminant livestock. Commonwealth Agricultural Bureaux, Slough.
  9. Arco-Pérez, A., Ramos-Morales, E., Yáñez-Ruiz, D.R., Abecia, L., & Martín-García, A.I. (2017). Nutritive evaluation and milk quality of including of tomato or olive by-products silages with sunflower oil in the diet of dairy goats. Anim. Feed Sci. Technol. 232:57-70.
  10. Asociación Española de Criadores de la cabra de raza Murciano-Granadina-ACRIMUR; www.acrimur.es; accessed October 2021).
  11. Asociación Nacional de Criadores de Ovino Segureño-ANCOS; www.ancos.org; accessed October 2021).
  12. Broucek, J. (2018). Methane abatement strategies based on genetics and dietary manipulation of ruminants: a review. Arch. Zootec. 67:448-458.
  13. Cambra-López, M., García Rebollar, P., Estellés, F., & Torres, A. (2008). Estimación de las emisiones de los rumiantes en España: el factor de conversión de metano. Arch. Zootec. 57 (R):89-101.
  14. Criscioni, P., López, M., Zena, V., & Carlos Fernández, C. (2015). Heat Production Partition in Sheep Fed above Maintenance from Indirect Calorimetry Data. Open J. Anim. Sci., 5:86-98.
  15. Criscioni, P., & Fernández, C. (2016). Effect of rice bran as a replacement for oat grain in energy and nitrogen balance, methane emissions, and milk performance of Murciano-Granadina goats. J. Dairy Sci. 99:280290.
  16. Cruz-Mira, M. (1988). Producción láctea en ovinos de raza Segureña. Periodo de amamantamiento. Comunicaciones agrarias, serie: Producción animal, no. 2.
  17. Farrell, D.J., Leng, R.A., & Corbett, J.L. (1972). Undernutrition in grazing sheep. II. Calorimetric measurements on sheep taken from pasture. Aust. J. Agric. Res. 23:466-509.
  18. Fundación Española para el Desarrollo de la Nutrición Animal-FEDNA (2009). In: Calsamiglia, S., Bach, A., de Blas, C., Fernández, C., & P. García-Rebollar (eds.). Recomendaciones nutricionales para rumiantes de leche. Normas FEDNA. Madrid, Spain. 89 pp.
  19. Fundación Española para el Desarrollo de la Nutrición Animal-FEDNA (2010). In: Bach, A., Fernández, C., & M. Terre (eds.). Recomendaciones nutricionales para rumiantes de recría. Normas FEDNA. Madrid, Spain. 69 pp.
  20. Fernández, C., Martí, J.V., Pérez-Baena, I., Palomares, J.L., Ibáñez, C., & Segarra, J.V. (2018). Effect of lemon leaves on energy and C–N balances, methane emission, and milk performance in Murciano-Granadina dairy goats. J. Anim. Sci. 96:1508-1518.
  21. Fernández Martínez, C.J., López Luján, M.D.C., & Lachica, M. (2015). Low-cost mobile open circuit hood system for measuring gas exchange in small ruminants: from manual to automatic recording. J. Agri. Sci. 153:1302-1309.
  22. García, M.A. (1992). Estudio de la ingestión voluntaria y de la fermentación ruminal de pastos naturales de zonas semiáridas en ganado ovino y caprino, Ph.D. Thesis, University of Granada, Spain, 196 pp.
  23. García, M.A., Aguilera, J.F., & Molina-Alcaide, E. (1995). Voluntary intake and kinetics of degradation and passage of unsupplemented and supplemented pastures from semiarid lands in grazing goats and sheep. Livest. Prod. Sci. 44:245-255.
  24. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.
  25. Graham, N. McC., & Searle, T.W. (1982). Energy and nitrogen utilization in body growth in young sheep from two breeds with differing capacities for wool growth. Aust. J. Agric. Res. 33:607-615.
  26. Hristov, A.N., Kebreab, E., Niu, M., Oh, J., Arndt, C., Bannik, A., Bayat, A.R., Boland, T., Brito, A.F., Casper, D., Crompton, L.A., Dijkstra, J., Eugène, M.A., Garnsworthy, P.C., Haque, M.N., Hellwing, A.L.F., Huhtanen, P., Kreuzer, M., Kuhla, B., Lund, P., Madsen, J., Martin, C., Moate, P.J., Muetzel, S., Muñoz,
  27. C., Peiren, N., Powell, J.M., Reynolds, C.K., Schwarm, A., Shingfield, K.J., Storlien, T.M., Weisbjerg, M.R., Yáñez-Ruiz, D.R., & Yu, Z. (2018). Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J. Dairy Sci. 101:1-20.
  28. Ibáñez, C., López, M.C., Criscioni, P., & Fernández, C. (2015a). Effect of replacing dietary corn with beet pulp on energy partitioning, substrate oxidation and methane production in lactating dairy goats. Anim. Prod. Sci. 55:56-63.
  29. Ibáñez, C., Moya V.J., Arriaga H., López D.M., Merino P., & Fernández C. (2015b). Replacement of cereal with low starch fibrous by-products on nutrients utilization and methane emissions in dairy goats. Open J. Anim. Sci.5:198-209.
  30. Intergovernmental Panel on Climate Change-IPCC (2019).2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4. Agriculture, Forestry and Other Land Use. Chapter 10. Emission from Livestock and Manure Management.
  31. Johnson, K.A., & Johnson, D.E. (1995). Methane emission from cattle. J. Anim. Sci. 73:2483-2492.
  32. Judd, M.J., Kellier, F.M., Ulyatt, M.J., Lassey, K.R., Tate, K.R., Shelton, D., Harvey, M.J., & Walker, C.F. (1999). Net methane emissions from grazing sheep. Glob. Change Biol.,5:647-657.
  33. Lachica, L., Aguilera, J.F., & Prieto, C. (1997a). Energy expenditure related to the act of eating in Granadina goats given diets of different physical form. Br. J. Nutr. 77:417-426.
  34. Lachica, M., Barroso, F.G., & Prieto, C. (1997b). Seasonal variation of locomotion and energy expenditure in goats under range grazing conditions. J. Range Manage. 50:234-238.
  35. Lachica, L., Prieto, C., & Aguilera, J.F. (1997c). The energy costs of walking on the level and on negative and positive slopes in the Granadina goat (Capra hircus). Br. J. Nutr. 77:73-81.
  36. Lachica, M., Somlo, R., Barroso, F.G., Boza, J., & Prieto, C. (1999). Goats locomotion energy expenditure under range grazing conditions: Seasonal variation. J. Range Manage. 52:431-435.
  37. Lassey, K. (2012). Methane Emissions and Nitrogen Excretion Rates for New Zealand Goats. MAF Technical Paper No: 2012/13, Wellington, New Zealand: Ministry of Agriculture and Forestry.
  38. Lassey, K.R., Ulyatt, M.J., Martin, R.J., Walker, C.F., & Shelton, I.D. (1997). Methane emission measured directly from grazing livestock in New Zealand. Atmos. Environ. 31:2905-2914.
  39. Leuning, R., Baker, S.K., Jamie, I.M., Hsu, C.H., Klein, L., Denmead, O.T., & Griffith, D.W.T. (1999). Methane emission from free-ranging sheep: A comparison of two measurement methods. Atmos. Environ. 33:1357-1365.
  40. López, M.C., Estellés, F., Moya, V.J., & Fernández, C. (2014). Use of dry citrus pulp or soybean hulls as a replacement for corn grain in energy and nitrogen partitioning, methane emissions, and milk performance in lactating Murciano-Granadina goats. J. Dairy Sci. 97:7821–7832.
  41. López, M.C., & Fernández, C. (2013). Energy partitioning and substrate oxidation by Murciano-Granadina goats during mid lactation fed soy hulls and corn gluten feed blend as a replacement for corn grain. J. Dairy Sci., 96:4542–4552.
  42. López, M.C., & Fernández, C. (2014). Energy partitioning and substrate oxidation by Guirra ewes fed soy hulls and corn gluten feed blend as a replacement for barley grain. Anim. Feed Sci. Technol. 189:11-18.
  43. López, M.C., Ródenas, L., Piquer, O., Cerisuelo, A., Cervera, C., & Fernández, C. (2011). Determinación de producción de metano en caprinos alimentados con dietas con distintos cereales. Arch. Zootec. 60:943951.
  44. López, M.C., Ródenas, L., Piquer, O., Martínez, E., Cerisuelo, A., Pascual, J.J., & Fernández, C. (2010). Effect of different physical form alfalfa on methane production in Murciano-Granadina dairy goats. J. Applied Anim. Res. 38:93-96.
  45. López-Luján, M.D.C., Ródenas Martínez, L., Piquer Querol, O., Martinez-Paredes, E., Cervera Fras, M.C., & Fernández Martínez, C.J. (2010). Determination of the proportion of the ingested gross energy lost as exhaled methane by dairy goats consuming contrasting concentrate ingredients in mixed rations. Can. J. Anim. Sci. 90:585-590.
  46. Marcos, C.N., Carro, M.D., Fernández Yepes, J.E., Haro, A., Romero-Huelva, M., & Molina-Alcaide, E. (2019). Effects of agroindustrial by-product supplementation on dairy goat milk characteristics, nutrient utilization, ruminal fermentation, and methane production. J. Dairy Sci. 103:1472-1483.
  47. Martínez-Fernández, G., Abecia, L., Martín-García, A.I., Ramos-Morales, E., Hervás, G., Molina-Alcaide, E., & Yáñez-Ruiz, D.R. (2013). In vitro–in vivo study on the effects of plant compounds on rumen fermentation, microbial abundances and methane emissions in goats. Animal 7:1925-1934.
  48. Martínez-Fernández, G., Abecia, L., Arco, A., Cantalapiedra-Hijar, G., Martín-García, A.I., Molina-Alcaide, E., Kindermann, M., Duval, S., & Yáñez-Ruiz, D.R. (2014a). Effects of ethyl-3-nitrooxy propionate and 3nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. J. Dairy Sci. 97:3790-3799.
  49. Martínez-Fernández, G., Abecia, L., Ramos-Morales, E., Martin-García, A.I., Molina-Alcaide, E., & Yáñez-Ruiz, D.R. (2014b). Effects of propyl propane thiosulfinate on nutrient utilization, ruminal fermentation, microbial population and methane emissions in goats. Anim. Feed Sci. Technol. 191:16-25.
  50. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente-MAPAMA (2021). Anuario de Estadística de 2019; https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/ default.aspx; accessed October 2021.
  51. Molina Alcaide, E., García, M.A., & Aguilera, J.F. (1997). The voluntary intake and rumen digestion by grazing goats and sheep of a low-quality pasture from a semi-arid land. Livest. Prod. Sci. 52:39-47.
  52. Niu, M., Kebreab, E., Hristov, A.N., Oh, J., Arndt, C., Bannik, A., Bayat, A.R., Brito, A.F., Boland, T., Casper, D., Crompton, L.A., Dijkstra, J., Eugène, M.A., Garnsworthy, P.C., Haque, M.N., Hellwing, A.L.F., Huhtanen, P., Kreuzer, M., Kuhla, B., Lund, P., Madsen, J., Martin, C., McClelland, S.C., McGee, M., Moate, P.J., Muetzel, S., Muñoz, C., O’Kiely, P., Peiren, N., Reynolds, C.K., Schwarm, A., Shingfield, K.J., Storlien, T.M., Weisbjerg, M.R., Yáñez-Ruiz, D.R., & Yu, Z. (2018). Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Glob. Change Bio. 2018:1-22.
  53. Osuji, P.O., Gordon, J.G., & Webster, A.J.F. (1975). Energy exchanges associated with eating and rumination of sheep given grass diets of different physical form. Br. J. Nutr. 34:59-71.
  54. Patra, A.K., & Lalhriatpuii, M. (2016). Development of statistical models for prediction of enteric methane emission from goats using nutrient composition and intake variables. Agric. Ecosyst. Environ. 215:8999.
  55. Pinares-Patiño, C.S., Ulyatt, M.J., Lassey, K.R., Barry, T.N., & Holmes, C.W. (2003). Persistence of differences between sheep in methane emission under generous grazing conditions. J. Agr. Sci.140:227-233.
  56. Prieto, C., Aguilera, J.F., Lara, L., & Fonollá, J. (1990). Protein and energy requirements for maintenance of indigenous Granadina goats. Br. J. Nutr. 63:155-163.
  57. Robles, A.B. (1990). Evaluación de la oferta forrajera y capacidad sustentadora de un agrosistema semiárido del Sureste Ibérico. Ph.D. Thesis. University of Granada, Spain.
  58. Romero-Huelva, M., Ramirez-Fenosa, M.A., Planelles-Gonzalez, R., Garcia-Casado, P., & Molina-Alcaide, E. (2017). Can by-products replace conventional ingredients in concentrate of dairy goat diet? J. Dairy Sci. 100:4500–4512.
  59. Romero-Huelva, M., & Molina-Alcaide, E. (2012). Nutrient utilization, ruminal fermentation, microbial nitrogen flow, microbial abundances, and methane emissions in goats fed diets including tomato and cucumber waste fruits. J. Anim. Sci. 91:914-923.
  60. Romero-Huelva, M., Ramos-Morales, E., & Molina-Alcaide, E. (2012). Nutrient utilization, ruminal fermentation, microbial abundances, and milk yield and composition in dairy goats fed diets including tomato and cucumber waste fruits. J. Dairy Sci. 95:6015–6026.
  61. Sanz Sampelayo, M.R., Ruiz, I., Gil, F., & Boza, J. (1990). Body composition of goat kids during sucking. Voluntary feed intake. Br. J. Nutr. 64:611-617.
  62. Swainson, N., Muetzel, S., & Clark, H. (2018). Updated predictions of enteric methane emissions from sheep suitable for use in the New Zealand national greenhouse gas inventory. Anim. Prod. Sci. 58:973–979.
  63. Ulyatt, M.J., Lassey, K.R., Shelton, I.D., & Walker, C.F. (2002a). Methane emission from dairy cows and wether sheep fed subtropical grass dominant pastures in mid-summer in New Zealand. New Zeal. J. Agr. Res.45:227-234.
  64. Ulyatt, M.J., Lassey, K.R., Shelton, I.D., & Walker, C.F. (2002b). Seasonal variation in methane emission from dairy cows and breeding ewes grazing ryegrass/white clover pasture in New Zealand.New Zeal. J. Agr. Res.,45:217-226.
  65. Yáñez-Ruiz, D. R. (2016). Bases zootécnicas para el cálculo del balance alimentario de nitrógeno y de fósforo. Ministerio de Agricultura y Pesca, Alimentación y Medio ambiente-MAPAMA. Spain. 234 pp.